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maximal representations 

e Burdikt, M HavliEek? and P Exner$ 
t Nuclear Centre, Faculty of Mathematics and Physics of the Charles University, areal 
Troja, Povltavska ul., 18000 Prague, Czechoslovakia 
$ Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, 
USSR 
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Abstract. Representations of the sl(n + 1, C) Lie algebra” constructed with the help of 
canonical (boson) realisations of these algebras. For every weight A on the standard Cartan 
subalgebra of sl(n + 1, C) we obtain a representation pj;+” (called the maximal represen- 
tation) which contains an irreducible subrepresentation with A as the highest weight. It is 
shown that for a major part of the weights A (specified by theorem 4.3) the representations 
p:“+’)  themselves are irreducible. The standard construction of the highest-weight 
representations of semi-simple Lie algebras is based on the so-called elementary represen- 
tations; comparing with them, our maximal representations are given in the explicit form. 

1. Introduction 

1.1 

There are essentially two reasons which make the highest-weight representations of 
semi-simple Lie algebras interesting. The first of them concerns their applications in 
quantum mechanics and elementary particle physics (reviewed e.g. by Gruber and 
Klimyk (1975)). On the other hand, mathematically they are a generalisation of the 
finite-dimensional irreducible representations conserving some of their properties. 

1.2 

The finite-dimensional irreducible representations with a highest weight A of a complex 
semi-simple Lie algebra L are characterised by the condition that A, = 2(A, w I ) / ( w I ,  U , ) ,  

i = 1, 2 , .  . , , n, are equal to non-negative integers (Zhelobenko 1970); here w ,  and n 
are positive simple roots and the rank of L, respectively. Properties of these represen- 
tations are well known (Zhelobenko 1970, Naimark 1976, Dixmier 1974). The 
representations with A, arbitrary integers may be infinite-dimensional, but remain 
integrable; this case was studied by Harish-Chandra (1955). 

The representations mentioned form, of course, only a small part among all the 
highest-weight representations of a given L. Many results concerning the general case 
(with no restrictions on A) can be deduced from the theory of Verma modules (Dixmier 
1974); an extensive treatment of this problem was carried out by Gruber and Klimyk 
(1975). In their paper the so-called elementary representations were introduced and 
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1040 6 Burdik, M Havlitek and P Exner 

studied (cf Q 2.6; essentially the same construction was used also by other authors for 
investigation of the highest-weight representations). The elementary representations 
are ex definitio representations with a highest weight; in general, they need not be 
irreducible; however, they are irreducible for a ‘great’ subset in the set of all weights A.  

Since there is a one-to-one correspondence between the weights A and the 
irreducible highest-weight representations of L (cf theorem 2.4(b)), it might seem that 
no other highest-weight representations are needed, at least for those h for which the 
elementary representations are irreducible. However, the representation spaces of the 
elementary representations are certain factor spaces (cf g2.6). It makes their use 
extremely difficult even in the case of the lowest-dimensional algebras, and represents a 
great practical disadvantage. This is why we suppose a search for other irreducible 
highest-weight representations to be meaningful. 

1.3 

In this paper we shall give another set of irreducible highest-weight represetations of 
sl(n + 1, C). A major part of them will be obtained in the explicit form in which matrix 
elements of generators can be easily calculated. In a subsequent paper (Burdik et al  
(1981) we shall illustrate, using the example of sl(3, @)-A2,  that such explicit 
representations are given for all the weights A to which the irreducible elementary 
representations correspond. Moreover, we shall demonstrate that our method makes it 
possible to construct irreducible highest-weight representations also for some of the 
weights A such that the corresponding elementary representations are reducible. 

1.4 

The construction presented in the following sections is based on canonical (or boson) 
realisations of sl(n + 1, C). Various applications of the boson operator technique to 
group representation theory are well known: see e.g. Baird and Biedenharn (1963), 
Kihlberg (1965), Moshinsky (1962) or Barut and Raczka (1977, ch X and references 
therein). Our method starts from the deeper and more systematic study of canonical 
realisations (HavliEek and Exner 1975a,b, 1978, HavliEek and Lassner 1975, 
1976a,b,c, 1977); for a particular survey of the subject see Exner et a1 (1976)). In these 
papers new wide families of realisations were derived for all complex classical Lie 
algebras as well as for the majority of their real forms. Compared with most of the 
standardly used ones, they have the Casimir operators realised by multiples of unity and 
enough parameters to make values of all the generating Casimirs independent. 
Moreover, realisations of the real forms are skew-symmetric under some standard 
involution. 

In this paper we treat the algebras sl(n + 1, @) -A, because their realisations are the 
simplest among the abovementioned ones. Let us notice that the particular case n = 3 is 
of some interest in connection with the recent attempt to combine gravity with strong 
interactions (Ne’eman and SijaEki 1979). We believe that our realisations can be used 
to construct highest-weight representations for other semi-simple Lie algebras as well; 
some positive indications for the B, and D, algebras have been obtained already. 

1.5 

The paper is organised as follows. All the necessary prerequisites are listed in 5 2. The 
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next two sections contain the main results. In § 3 the maximal representations p F + ”  of 
sl(n + 1, C) are constructed; it is shown further that each p ? + ’ )  contains an irreducible 
subrepresentation OF+’) with the highest weight A. In § 4 conditions are given under 
which the maximal representations themselves are irreducible. In the last section the 
results are discussed, and in particular a detailed comparison with the elementary 
representations is made. In the subsequent paper mentioned above, the results will be 
illustrated using the simplest examples of the A,  and A2 algebras. 

2. Preliminaries 

2.1 

The algebra gl(n + 1, C) is the (n + 1)2-dimensional complex Lie algebra with the 
standard basis {eij: i, j = 1, 2, . . . , n + l}, the elements of which obey 

This algebra is a direct sum of its one-dimensional centrum (generated by the element 
e = C i  = e i i )  and the simple subalgebra sl(n + 1, C) -A,, whose generators are eij, i # j 
and ai = eii - ( l /n)e ,  i = 1, 2, . . . , n. 

n + l  

2.2 

The standard Cartan subalgebra H in L = sl(n + 1, C) is generated by the ‘diagonal’ 
elements a i ;  its dimension, i.e. the rank of L, equals n. We choose the following 
Cartan-Weyl basis: 

The relations (1) imply that (2b-2e) are the root vectors corresponding to the roots 
all :  a l l ( E ~ = l  Akhk) = A ,  -Al.  Among these roots w, =(Y,+~,~  and w-, are simple; 
further, all, i > j ,  are positive. Following Zhelobenko (1970), we call the elements 
(2a-2c) canonical generators of L. They satisfy the relations 

where cij are the Cartan numbers, cij = 2, -1, 0 for i = j ,  li - j l  = 1, li - j i  > 1, respec- 
tively. Notice that the Cartan-Weyl basis (2) differs from the standard one (Bourbaki 
1968); they are connected by the automorphism generated by ek i  -eii, hi -h-i. We 
choose the basis (2) because it is suitable for our construction. 
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2.3 

The universal enveloping algebra of L will be denoted conventionally by UL. Let p be a 
representation of L on a vector space V; by the same symbol we denote also the natural 
extension of p to UL. A representation p : L -+ 2'( V) is called the representation with a 
highest weight A = (Al,  . . . , A,) if there exists a vector xo E V (called the highest-weight 
vector) such that the following three conditions are fulfilled: 

(i) the linear form A on H, A@,) =A,,  is a weight of p, it holds that p(h)xo = A(h)xo 
for all h E H or equivalently p (h , )xo = A,xo, i = 1, 2, . . . , n ; 

(ii) p(e,)xo=O, i = 1 , 2 , .  . . , n ;  
(iii) the vector xo is cyclic for p, i.e. p(UL)xo=b(a)xo:  a EUL}= V. 

Since a system of canonical generators exists in any semi-simple Lie algebra, this 
definition applies not only to L = sl(n + 1, C) but to the other semi-simple algebras as 
well, The lowest-weight representations are defined in the same way, the only change 
consisting of replacement of p(e , )  by p ( J )  in (ii). Some important properties of the 
highest-weight representations are summarised in the following assertions (cf e.g. 
Gruber and Klimyk (1975) for references to proofs). 

2.4. Theorem. 

Let L be a complex semi-simple Lie algebra and p : L + 2'( V) its representation .with a 
highest weight A. 

(a) The space V decomposes into a dirkct sum of finite-dimensional weight 
subspaces V, ={x E V:  p ( h ) x  = M ( h ) x ,  V h  EH}, the subspace V,, being one-dimen- 
sional. Every weight M of p is of the form M = A - Er=, k,w,, where w ,  are the positive 
simple roots of L and k ,  are non-negative integers. 

(b) For each linear form A on the Cartan subalgebra H of L there exists, up to 
equivalence, one and only one irreducible representation p of L with A as the highest 
weight. 

2.5. Theorem. 

Let the assumptions of the previous theorem be valid. The representation p is 
finite-dimensional if and only if Ai = A(hi) ,  i = 1, 2, . . . , n, are non-negative integers. 

2.6 

Now we shall define the elementary representations of L. The algebra L decomposes 
into the direct sum L = L, + H + L -  where L is the subalgebra generated by the 
elementsfi (cf (2c) ;  notice that each of the elements (2e)  can be obtained fromfl, . . . , fn  
by Lie products). The universal enveloping algebra UL- of L- serves as a represen- 
tation space. It can be identified with the free algebra of monomials 

factorised by the ideal generated by the following elements: 

for those (il,  iz, . . . , i,) for which the sum of positive simple roots wik is a root. 
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The elementary representation d,, corresponding to a linear form A on H is defined 
by the following relationst 

d * ( h ) l =  A(h)l, dA(fi)l =fi ,  dA(e,)l= 0, (4a 1 
d,(h)fIlf;, . . .fl,,, = ( A - w , , - w 1 , - .  . .-q??)(h)fllL*. * .fl,, (4b) 

d*(fl )filf;, . . . f l m  =fifi,fi*. . . fi,, (4c 1 
(4d) d ~ ( e , ) f l , f ; ,  . . .fl, =fll(d~(el)fi,  . . . f 1 , ) + ~ i 1 1 ( A - ~ 1 2 - .  . . -wm)(h) f12. .  .fl,; 

heie w, are again the positive simple roots of L. The representation 4, is clearly a 
representation with the highest weight A; in general it is reducible but not completely 
reducible. Necessary and sufficient conditions for irreducibility of d,, can be found 
which employ the action of the Weyl group W of L on the highest weight A (cf theorems 
5, 6 of Gruber and Klimyk (1975)). 

2.7 

The last introductory item concerns the canonical realisations which are the basic tool of 
our construction. The (complex) Weyl algebra WZN is the associative algebra with unity 
1 generated by the elements q,, p,, i, j = 1, 2, . . . , N ,  which obey 

[ P l ,  P,I = [Sl ,  %I= 0, [PI, q, 1 = &,I;  

it is often called a boson algebra in physical literature. Acanonical (or boson) realisation 
of a Lie algebra L is a homomorphism L +  WZN ; it extends naturally to the homomor- 
phism UL+ WZN. In the following we shall deal with simple algebras; in this case any 
non-trivial realisation is injective. For further notions and properties concerning 
canonical realisations we refer to the papers by two of us (together with W Lassner) 
quoted in § 1.4. 

We shall use the canonical realisations of gl(n + 1, C) constructed by HavliEek and 
Lassner (1975). They are obtained recursively with the help of n canonical pairs, one 
complex parameter and a realisation of gl(n, C) (however, this is not a realisation of the 
correspondinggl(n, C) subalgebra in gl(n + 1, C)- cf (5) below-and therefore there is 
no direct analogy here to what are called canonical bases by Gruber and Klimyk 
(1979)). The latter can be chosen in different ways: canonical realisation of the same 
type, matrix representation or trivial representation; in the first case the same possi- 
bilities appear after the next step in the choice of a realisation of gl(n - 1, C) etc. In what 
follows we employ mostly the first possibility when the reduction is performed to the 
end with canonical realisations of the same type (the possibility of using matrix 
representations of some subalgebra will be employed in the subsequent paper 
mentioned in § 1.3). The realisation of the generators e,, of gl(k + 1, C) will be denoted 
by 7 ( k + 1 ) ( e l , ) .  It is convenient to enumerate the canonical pairs in these realisations by 
two indices: q;+l, p ; + l ,  i, j = 1,2,  . . , k ,  k = 2, 3, . . ; then the following assertion is 
valid. 

2.8. Proposition. 

For any complex numbers a n ,  a l ,  . . . , an there exists a realisation of gl(n + 1, C) in 

t The difference in sign in (4d) compared with Gruber and Klimyk (1975) is due to a slightly different choice 
of the canonical generators. 
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x;+1 = 

i, j = 1, 2, . . . , n, where 7(')(el1) =iao. 

0 . . .  0 

0 
. . .  

3. Maximal representations of sl(n + 1, C) 

:(mkj+1)1'2 

3.1 

Let Bn+l denote the set of all symbols (triangular matrices) 

mn 1 . . .  m n n  

. . .  
mkl  . . . mkj + I  . . . m k k  

. . .  
mll 

where N o  is the set of all non-negative integers. These symbols will denote the basis 
vectors and the complex linear envelope Vn+l = @{Bn.,} will serve as the representation 
space. The vector 

. . .  mnn 
. . .  

. .  mkj . . .  m k k  

. .  
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They obviously obey the canonical commutation relations 

(8) k - 1  - [a:, 4 1  = La:, 1 = 0, [a I , a,  7 - 6, 8klI ; 

the same is true for the operators 

QF(P)=6: cosp +a: sinp, P: (P) = -a: sin p +a: cos p.  (9) 

Substituting now Q: U), P: (P) into the formulae ( 5 )  for q:, p: ,  we obtain a represen- 
tationofgl(n + 1, @)on Vn+l whichdependsontheparameterscyo, c y 1 , .  . . , c y n  andp. In 
the following we shall deal mostly with the case p = 0. The representations of 
gl(k + 1, @) obtained in this way ( k  = 1,2 ,  . . . , n )  will be denoted by P ( ~ + ' ) .  We shall 
use also E:'' as a shorthand for p(k+l'(e,,), e,, E gl(k + 1, C); in this notation the 
representation under consideration is given by the relations 

\] = 1 L 

n 

E,":i,n+l = - 1 a;+'a;+l - (10d) 

Let us further express the corresponding representation of the subalgebra sl(n + 1, @) in 
terms of the basis (2). We obtain 

] = I  

( l l a )  = (loa), ( l l b )  = ( l o b ) ,  

where 
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These new parameters will be very important in the following. For any A =  
(As, A2, . . . , A,,) the formulae (11) define a representation of sl(n + 1, 02); we call it the 
maximal representation and denote it by pi;+” or simply p A  if there is no danger of 
misunderstanding. 

3.2. Proposition. 

The restriction by+’ )  of p?+” to the subspace Vk+] =p?+l)(UL)x:+l of V,+l is a 
representation of L =  sl(n + 1, C) with the highest weight A and the vacuum x;lfl as its 
highest-weight vector. 

Proof. The relations (1 Id) and ( 7 b )  implyp,(hj)x;+’ = Rix:++’, j = 1,2,  , . . , n. Further 
n+1 

k = i + 2  

k i t 1  p.h(eC)=pA(ei+i,i)= C a:+sai -ai , 

due to ( l l a , b ) ,  so that pA(ei)x;+’ = 0, i = 1 , 2 ,  . , , , n. The restriction p”:“+’) is properly 
defined because p ~ ( a )  maps into itself for any a E L. The condition (iii) of 8 2 . 3  is 
fulfilled automatically for CA.  

Thus we have constructed for any A = ( A I ,  . . . , A,) the highest-weight represen- 
tation ;!?+’) of sl(n 9 1, e). These representations are even irreducible, as we shall 
show a little later. However, they are not yet suitable for practical use, because we do 
not know the representation space Vk+l explicitly. In the next section we shall find 
conditions under which Vk+l = Vn+l, i.e. :!(+I) = p ( ; + I ) ;  they turn out to be irreduci- 
bility conditions for p!Z”+l’. 

4. Irreducibility conditions for p?+’) 

4.1 

We shall use the following simple fact. 

Proposition. Every non-trivial invariant subspace V‘ c Vn+1 of p?+” contains the 
vacuum vector x:+’. 

Proof. Since V’ is assumed to be non-trivial it contains at least one non-zero vector 
x E V,,+l. We can write 

m = (mfli ,  . . , m n n ,  mfl-l,l ,  . . . , mrt-i,n-i, mn-2,1, . . . , mid. 
Let rii = ( r i in1 ,  . . . , ell) be a ‘highest degree’ of this sum, understood in the following 
sense: 

rii,,] = max{mnl : C Y ,  # 0}, 
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The relation ( l l a )  implies 

Since V'  is assumed to be an invariant subspace of p,\, the vector E;+'y belongs to V' 
for any y E V' .  Consequently, the vector 

j = (E;;' ) (  -11  E3n:1)A22(E3n;1)*21(Eqn:1)A33 , . . 
. . . (Efi:')"n-','(Efi=:,~)*nn. . . (E:;'I,I)*~'X 

belongs to V'.  The chosen order ensures that the sums from ( l l e )  do not contribute. 
Further, (*) together with ( 7 b )  imply 2 = camx;+' ,  where c is some non-zero number (a 
product of powers of -1 and square roots of positive numbers); therefore x:+' E V'. 

4.2. Corollary. 

The representation Er+') from proposition 3.2 is irreducible for any A. 

Proof. Any non-trivial invariant subspace V' c V,"+, of E,, is at the same time invariant 
under ph; thus it contains the vacuum vector xs+', It further implies VI= 
p,,(L)x:+' c V' ,  VZ=pA(L)V'  c V' etc. We obtain therefore p,,(UL).u;+' = 
V:+' c V' so that V' = V,"+'. 

4.3 

Let us turn now to the problem mentioned at the end of the last section. We shall prove 
the following assertion. 

Theorem. Let the conditions 

(Aj+Aj-1+. . . + h k + j - k ) & N o  (13) 

be satisfied for any pair of integers j ,  k,  1 S k -S j = 1,2 , .  . . , n. Then the maximal 
representation pY+" of sl(n + 1, C) defined by the formulae (11) is irreducible; it has 
the highest weight A = ( A l ,  . . . , A,,) and the highest-weight vector x;+'. 

Proof. In view of proposition 3.2 and corollary 4.2 it is sufficient to verify that under the 
stated assumptions = !In+' holds. We shall do it in several steps. 

4.4  

We denote first by x:+' the basis vectors (6) with all the indices equal to zero with the 
exception of m,,' : mkj  = s 8kn 6i l ;  in particular, x:+' is the vacuum vector as before, The 
following assertion holds. 

Lemma. If the conditions (13) are valid for l < k s j = n ,  then the subspace V:+' 
contains the vectors x:.+' for all s E No. 

Proof. Let us introduce the following finite sequences of operators (for convenience 
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written as columns): 

Let us further take an arbitrary s E No and denote 

~ R ~ E Y ; : ~ X : + ~  

- I  R,,E ;,: L x : + I  

rill - R~E;,TYIx;+' 
Y n  =Rn+lxs  

This column has 2"-' rows. We  divide it into two parts with 2n-2 rows: 

R E :,: L x s + l  

, ~i = IRnE;,::lx;+'I: 1 
Y n =  

n + l  n + l  
R n - l E n - l , n + l X s  

and introduce 
1 2  

y n - 1  = ( s - A n ) y n - y n .  

Further we divide the column y n - l  into two parts: y L - l  (consisting of the first 2"-3 rows) 
and y i - 2 .  Then we define yn-2  = (s - A ,  -L1- l ) ~ : - ~  - y n P 1 .  Continuing this pro- 
cedure, we put 

2 

2 
y n - k = ( S - A n - A n - l - . .  * - A n - k + l - k + l ) y L k + l  - Y n - k + l  

for all 1 s k s n  - 1.  Finally we obtain a one-row column, i.e. a vector y l .  W e  shall 
prove that the relation 

holds. For this purpose we shall use the relations (1 I C )  together with (7a ,b ) .  The  latter 
imply 

(***I a ~ + l x ~ + l  = Ji skn ~ , ~ x : : : ,  - k + l  k + l  n + l  a ,  a ,  x ,  =s8kn8,1x:+l ,  

so that we obtain for y n  the following expiession: 

n n + l  ~ 

+ R 2  d Y + l E ~ j x ,  
j = 3  
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Here the terms containing ECx:+', i > j ,  are equal to zero because of (***) and the 
relation 

n 

E ; =  d fa : -a i ,  i > j ,  
k = i + l  

which is obtained in the same way as ( l l e ) .  Now we substitute for R,  from (*); using 
further the relations ( l l a ) ,  (8) and (***) we obtain 

n - 1 

j = 2  
~ ~ i i ; + '  (S -A,  - .  . . - A~).X:+' + R~ 1 ~;+'E;,x:+' + R~~~;+ 'E; ,X:+ '  

Subtracting the lower half of this column from the upper one multiplied by (s -A, , ) ,  we 
obtain the following expression for y n P l :  

R l d ; + ' ( s - A , ) ( ~ - A n  -. . . - -Al - - l )x :+ '  + R l ( s - h , )  1 dY+'E;,x:+' 
n-1  

j = 2  

In the next step we substitute for R,.-, from (*); then we use again the relations ( l l a ) ,  
(8) and (***) and subtract the lower half from the upper one multiplied by (s - A ,  - 

1Z?,,-2d;?;(s-An -A, , - l -A, , -2-2)xT n + l  

Repeating this procedure, we obtain finally 

i.e. the formula (""1. The presented construction shows that there exists an element 
p E UL such that 

n 

p , \ ( p ) ~ " ' = ( s + l ) " ~  ( s - A n - .  . . -A,-n+j)x,":: .  
,=1 
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This vector is non-zero due  to the  assumption, thus if x ; + l  belongs to the subspace 
Vi+1 = p ,(UL)xl;+' then the same is true for x:::. Since x;+' is contained in V:+l, the 
proof is completed by induction. 

4.5 

Now we can continue the proof of theorem 4.3. Since V,",, c V,l+l, we have to prove 
the opposite inclusion; it is clearly suflicient to verify that all the basis vectors (6) of Vn+, 
are contained in Vt-l .  W e  decompose Vn+l in the following way: let Dn+l be the set of 
all symbols I = (I1, I * ,  . . . , l n ) ,  li E No and Ln+l  be  the complex vector space spanned by 
Dntl .  Then we can write 

Vn+l= Ln+lO v,,, x ; + l  = I ,  0 x ; ,  (14) 

where 

and lo= (0, . . . , 0). We shall prove first 

Ln+10 x;; = v;+*. 

I ,  . . . I n - ]  I,, 
mn-l,l . . . 112, - 1 , n  - I 

. . .  

Let us take 1 = (11, . . . , l k ,  0, . . . , 0). 1 s k S n - 1. Using (1 l e )  we obtain 

According to lemma 4.4 the vectors x,nC1 = (s, 0, . . . , 0) 0 xl; belong to V;1Ztl, so acting 
on them by powers of E:::,, we stay within V;+,. Starting with s large enough, we can 
obtain in this way every basis vector of LnLI 0 x ; ;  thus the relation (15) holds. 

4 

4.6 

Further we shall show that V,',, contains Ln+l 0 x: for any r E No. W e  know that this 
is true for r = 0; let us assume the same for r = 1,2 ,  . , . , s. The proof is analogous to that 
of lemma 4.4: we start with an arbitrary ZS == 10 x; and denote T n - ,  = Rnfs .  Then we 
divide this column into two parts and define yn-* = (s - AA,l-l)yn-l - y n - l .  
Continuing this procedure with 

2 -1 -2  

we arrive finally at the vector F l .  According to the construction this vector belongs to 
Vn+l  ; we shall show it to be of the form 1 

n - t  

91 = (s + n (s - A,-,- . . . - hi - n + j  - 1)(10 x ; + l )  + 2:  (*I 
i =  1 
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where 2: is some vector from Ln.kl O x:. We write y I l l - l  using (110). Then we express 
E:; with the help of relations ( l l c )  and ( 7 ) ,  obtaining thus for yInP1 

Now we can proceed further in the same way as in the proof of lemma 4.4. The added 
vectors 6: + 'a  if'f, belong to L,+1 0 x:, thus the same holds for any linear combination 
of them. Finally we obtain 

this proves the relation (*). The induction assumption implies f: E V t + l  ; then the 
vector f l - f :  also belongs to VJ+l ,  The conditions (13) are assumed to be valid for 
j = 1 ,2 ,  . . . , n, especially for j = n - 1, and thus yI1 -21 is a non-zero multiple of fS+], 
which belongs therefore to Vk+]. 

4.7 

Further, we decompose Vn+] into the tensor product V, c l  = L,+] O L, 0 Vn-l in 
analogy with (14). Let us take some k = 1 , 2 , ,  , . , n - 2  and natural r and assume the 
vectorsx(m, l ( k , s ) ) = m  O l ( k , s ) O  x x:-' to belong to Vk+l for any m E Ln+l,  l ( k ,  s) = 
(11, . . . , l k ,  s ,  0, . . . , O), li arbitrary elements of No and s = 0, 1, , . . , r - 1. The relations 
(7) and ( l l e )  imply 

Thus by induction Vi,] contains the vectors x (m,  l ( k ,  r ) )  for all r E No, i.e. if V t + l  
contains the vectors x (m,  l(k, 0)) with arbitrary I (k ,  0) and m EL,,], then the same is 
true for x (m,  l ( k  + 1 , O ) ) .  According to § 4.6 the vectors x (m,  l(1,O)) belong to V:+l, so 
that applying once more the induction argument we obtain x ( m ,  l ( n  - 1,O)) = x ( m ,  I )  = 
m o I o x6-I E v:+~ for any m EL,+] ,  I EL,. 
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4.8 

Now one has to repeat the considerations of §§ 4.6 and 4.7 in order to ‘fill up’ the third 
row. Continuing this procedure, we arrive at the relation 

n 

vn+l = @ Lk+l vt+l 
k = l  

which represents the desired result. 

5 .  Discussion 

5.1 

Let us assume all the components of the highest weight to be real. Then coefficients of 
all polynomials used in the performed proofs are also real. It means that in this case the 
results obtained in the previous sections for sl(n + 1, C) apply to the real form 
sl(n + 1, C) as well; this question is left open for complex weights. The problem 
naturally arises under which conditions the representations of sl(n + 1, R) and other real 
forms of An are skew-symmetric. The answer depends on a choice of the inner product 
in V,+l or, more generally, on a representation of the canonical pairs substituted into 
(5). There are some results which can be used here, for example the following statement 
which is concluded easily from Havlitek and Lassner (1975): if the parameters 
c y o , .  . . , cy, in (5) are real and q i  are represented by symmetric and skew- 
symmetric operators (on a common dense invariant domain), respectively, then the 
resulting representation of sl(n + 1, R) is skew-symmetric. A detailed discussion of this 
problem is left to the subsequent paper. 

k + l  k t l  , p i  

5.2 

The finite-dimensional irreducible representations of sl(n + 1, C) may be described 
completely in the framework of Gel’fand-Zetlin patterns. There exists a generalisation 
of this method (Barut and Raczka 1977, $ 11.8) which makes it possible to construct 
also some infinite-dimensional highest-weight representations. In the case of sl(3, C), 
for example, one has to replace the Gel’fand-Zetlin patterns 

m13 m23 m33\ 

m13 m23 m33 [ m1;,:22 1 by jm12 m22 

mll  

with m12 3 m I 3  + 1, m13 2 m22 3 m23, m t 2  3 m l l  3 m22. Action of the standard 
Gel’fand-Zetlin formulae on these patterns defines an infinite-dimensional highest- 
weight representation of sl(3, @) (determined by m13, m23, m33). However, one can 
obtain in this way only representations with (possibly negative) integer components of 
the highest weight; they correspond only to a small subset of the representations which 
we have studied here. 

5.3 

We have to compare our results first of all with the elementary representations 
introduced in E) 2.6, because the latter are defined also for each weight A on H. 
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(a) Every d., is the highest-weight representation; for our maximal representations 
this is true if the conditions (13) are satisfied, otherwise we obtain the highest-weight 
representation by restriction of pA to the subspace V,",,. On the other hand, the 
highest-weight representations which we obtain are always irreducible. This difference 
is due to different incomplete reducibility of dA and P A :  symbolically 

and d ,  and ;, are the irreducible components of dA and p A ,  respectively, and the 
asterisk stands for non-zero blocks. 

(b) Action of the operators p,\(hL), pA(el,)  on an arbitrary vector of V,+l is obtained 
from the formulae (7) and (11). In particular, they allow us to calculate easily matrix 
elements of the generators. This is not true for the elementary representations for 
which the choice of a basis in the representation space is itself complicated. According 
to our opinion, this fact represents the main advantage of the maximal representations. 
We pay, of course, a price for it: the formulae (4) defining elementary representations 
are common for all the complex semi-simple Lie algebras, while ours refer to the 
algebras A, only. There exists, however, a hope of performing an analogous con- 
struction for the remaining classical semi-simple Lie algebras. 

(c) In the subsequent paper mentioned in f3 1.3 we shall illustrate the irreducibility 
conditions on the example of sl(3, C). We shall prove that the conditions (13) are in this 
case necessary and sufficient for irreducibility of the maximal as well as the elementary 
representations. Further, we shall show that starting from the canonical realisations (5) 
one can construct irreducible highest-weight representations also for some of the 
weights such that the corresponding elementary representations are reducible. 
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